Sample-Efficient Algorithms for Recovering Structured Signals From Magnitude-Only Measurements

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample-Efficient Algorithms for Recovering Structured Signals from Magnitude-Only Measurements

We consider the problem of recovering a signal x∗ ∈ R, from magnitude-only measurements, yi = |〈ai,x〉| for i = {1, 2, . . . ,m}. This is a stylized version of the classical phase retrieval problem, and is a fundamental challenge in nanoand bio-imaging systems, astronomical imaging, and speech processing. It is well known that the above problem is ill-posed, and therefore some additional assumpt...

متن کامل

Fast, Sample-Efficient Algorithms for Structured Phase Retrieval

We consider the problem of recovering a signal x∗ ∈ R, from magnitude-only measurements, yi = |〈ai,x∗〉| for i = {1, 2, . . . ,m}. Also known as the phase retrieval problem, it is a fundamental challenge in nano-, bioand astronomical imaging systems, and speech processing. The problem is ill-posed, and therefore additional assumptions on the signal and/or the measurements are necessary. In this ...

متن کامل

Recovering Structured Data From Superimposed Non-Linear Measurements

This work deals with the problem of distributed data acquisition under non-linear communication constraints. More specifically, we consider a model setup where M distributed nodes take individual measurements of an unknown structured source vector x0 ∈ Rn, communicating their readings simultaneously to a central receiver. Since this procedure involves collisions and is usually imperfect, the re...

متن کامل

Stable Recovery of Structured Signals From Corrupted Sub-Gaussian Measurements

This paper studies the problem of accurately recovering a structured signal from a small number of corrupted sub-Gaussian measurements. We consider three different procedures to reconstruct signal and corruption when different kinds of prior knowledge are available. In each case, we provide conditions (in terms of the number of measurements) for stable signal recovery from structured corruption...

متن کامل

Recovering Structured Signals in Noise: Least-Squares Meets Compressed Sensing

The typical scenario that arises in most “big data” problems is one where the ambient dimension of the signal is very large (e.g. high resolution images, gene expression data from a DNA microarray, social network data, etc.), yet is such that its desired properties lie in some low dimensional structure (sparsity, low-rankness, clusters, etc.). In the modern viewpoint, the goal is to come up wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2019

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2019.2902924